
event data
processing.
simplified.
What exactly is layline.io?

layline.io is an event-data-processing platform which
combines high-configurability and operations with the
power of reactive stream management.

It can handle massive amounts of real-time and batch
event-data for a myriad of use cases, either locally or in a
fully distributed and resilient fashion.

Define individual workflows, business logic, and deal with
any data format, source or sink, simply by configuration.

No custom object coding. Instead let a product do the job.

Motivation

What motivated us to create layline.io were a number of
real-life problems in the area of event-data-processing,
which were largely unaddressed by existing solutions. We
deemed these issues so important, that we thought it is
worthwhile addressing them with a new product.

■ Real-time volume to increase tenfold in the next few
years.

■ Companies struggling to reap transactional value of
real-time data (do something useful with it in the first
0-3 seconds).

■ Companies‘ system architectures solidly migrating to
cloud architectures, without proper solutions to support
this in all aspects.

■ Lack of actual products to support distributed real-time
event processing, instead of having to create custom
programmed solution based on development toolkits.

■ Availability of awesome streaming technology like akka
and flink, which unfortunately have a steep learning
curve and do not allow for complete setup and
operations by configuration.

■ lots more.

Can’t I solve these problems by other means?

Yes, but it’s tough, lengthy and will cost you dearly. In the
past years, and in the context of the Big Data evolution we
have witnessed a myriad of new concepts and truly
awesome technologies emerge. Cloud, process distribution,
asynchronous processing and many more, just to name a
few.

You have seen many cool examples and show cases, for
sure. None of them, however, were simple to create and
required lots of time and specialized staff and resources.

layline.io wants to make this easy by enabling users to

1. create individual event workflow processing logic

2. which can be deployed across a distributed processing
network (physically, logically and geographically)

3. which asks to configure and deploy everything without
custom coding, and

4. supports any event-processing scenario from small to
super extra large in a highly scalable and resilient
environment (or simply on your laptop!)

What about microservices?

microservices vs layline.io

individual custom coding - configurable workflows

distribution unaware - distribution built-in

not resilient OOTB - resilient by design

scalability external - scalability built-in

no load-balancing - load-balancing built-in

not data aware - data aware by design

different code on each node - same engine on all nodes

+ resilient high-performance real-time processing

+ configurable event-workflows

+ data awareness

+ out-of-the-box connectivity

+ cloud-native architecture

= distributed reactivedata mesh

key points



platform
Comprehensive configuration environment

layline.io implements reactive stream management under
the hood. It’s awesome. To make things easy we have
added a configurability framework, flexible data parsing
technology, automated deployment, operations and
monitoring tools and interfaces, connectors and much
more.

Workflows

Workflows are a core part of layline.io. Everything revolves
around workflows which are configured through the web-
based configuration center. Each workflow manifests an
event processing logic to run on one or more nodes.

Within a workflow, you can pick from a number of pre-
defined, but configurable processors. Examples are filtering,
data mapping, custom javascript logic, and more.

Processors

Each workflow consists of a number of processors which
are wired up to form the actual event-flow. Processors can
be picked from a list of pre-made processors (which is
continuously extended). A future version will support
creation of custom processors via SDK. Generally you can
distinguish between source, logic, and sink processors.

Data awareness

By data awareness, we mean that layline.io is able to
understand any form of structured data by way of
configuration. You simply define the data format using
layline.io’s own grammer language and can instantly see
the result with a sample data file. No custom coding
necessary.

Assets

An asset is a pre-made template for a processor, workflow
or project. This is useful to components which can be
reused across projects and workflows. For example when a
processor is added to a workflow, you can decide on

1. whether you want to create a completely new asset that
this processor is based on, or

2. whether you want to reuse an existing asset and inherit
all its settings for this processor, or

3. not use an asset at all but simply enter the
configuration for this one processor and never reuse
any of it.

Once a processor is based on an asset, all its settings are
inherited. they can be individually overwritten to deviate
from the asset’s standard settings.



Simple two step setup process

1. Cluster setup: Setting up a layline.io cluster involves
setting up a number of nodes which each run the
layline.io reactive engine. This can be done either by
native installation, or through containerization (docker)
and container management (kubernetes). The resulting
layline.io cluster can be dynamically expanded or shrunk
any time and at runtime.

2. Workflow setup: Independent of the cluster setup, the
workflows can be defined and configured using the
layline.io web-based configuration center. When
complete the workflows can be automatically deployed to
the layline.io cluster. This process can be repeated on an
ongoing basis to accommodate changes.

layline.io allows a sheer endless combination of setups and
use cases. The image below depicts an examplary edge
computing setup. It is characterized by

■ Cluster spread across geographic locations (edge / fog
/ cloud & data center), but maintaining one coherent
virtual data mesh.

■ Each node running at least one reactive engine with
one or more workflows assigned to it

■ Ability to analyze data close to the source of origin .
This allows to react quick if necessary and only forward
information as necessary.

setup

example setup

data sources & sinks edge computing fog computing cloud computing

ACT!

ACT!



fast data
crazy fast data processing

streamed processing
native stream processing instead of
batch

scale up and out
unparalleled horizontal and vertical
scalability

massive volume
ready for the real-time data tsunami

distributed
deploy distributed from tiny to XXL
platforms

self-healing
nodes take on other node’s work on
fail until they rejoin

self-balancing
auto-balances work across available
resources

configurable
no low-level coding required. define
own business logic.

payload-aware
understands payload structure by
configuration. know what you work on

key differentiators

interested?

connectors / data formats

example use cases

data transformation

transform data from one
format into another. apply
any sort of data
enrichment, filtering and
routing. feed into any
target.

stream data processing

real-time streaming data
scenarios with multiple
distributed ingestion
points. sophisticated data
treatment and non-stop
operation.

edge computing

deployment in
sophisticated distributed
environments. typical for
edge computing setups
where computing needs to
be autonomous and spread
over geographies.

etl / elt

big data loading and
transformation routines for
small to very large and
complex scenarios.

systems monitoring

feeding systems data from
any source in real-time for
the purpose of systems
monitoring.

data filtering

filtering data from data
streams based on custom
filtering rules. combine with
enrichment, routing, and
transformation.

data mediation

typical data mediation
scenarios, involving
elements of data
transformation, multi-
connectivity, complex
custom data formats,
massive data volumes.

cep – complex event
processing

typical complex event
processing scenarios
which require utmost
flexibility, scalability and
adaptability.

batch data processing

traditional batch
processing, but in a cloud-
native architecture and at
much larger scale than
possible with legacy
systems.

The following list shows
an excerpt of the most
important connectors:

Cloud interfaces:

■ AWS
▪ DynamoDB
▪ Kinesis
▪ lambda
▪ S3
▪ SNS

■ Azure
▪ Event Hubs
▪ IoT Hubs
▪ Storage Queue

■ Google Cloud
▪ Pub/Sub
▪ Pub/Sub gRPC
▪ Firebase

NoSQL:

■ cassandra
■ couchbase
■ Kudu
■ HBase
■ HDFS
■ Mongo
■ OrientDB

Protocols:

■ http
■ restful
■ FTP/SFTP
■ IronMQ
■ Java JMS
■ MQTT
■ SSE
■ Web Sockets
■ TCP
■ UDP

■ UDS
■ gRPC

Data formats are
supported by
configuration. Examples
are:

Structured:

■ XML
■ JSON
■ HTML
■ Binary
■ Any text format
■ Parquet
■ Avro

Unstructured:

■ MS Office formats
■ Open Office
■ Apple iWorks

■ RTF
■ PDF
■ ePub
■ Help formats
■ Mail formats

Media:

■ Audio
■ Video
■ Images
■ Syndication

We are constantly working
on adding to the data
parsing capability of
layline.io. Ask us if you
don’t find what you are
looking for.

If we were able to spawn your interest, please
don’t hesitate to contact us at:

layline.io GmbH
Airport Center C
Flughafenstr. 52a,
22335 Hamburg, Germany

email: hello@layline.io

web: https://layline.io


